Neonatal surgery in the past: Can it affect pain response in the future?

Suellen Walker
MBBS MMed MSc PhD FANZCA FFPMANZCA
Reader and Consultant in Paediatric Anaesthesia and Pain Medicine

OUTLINE

1. Early life experience and pain
 - preterm birth ± neonatal surgery
 - long-term outcome
 - somatosensory processing

2. Preterm born children and young adults
 - modulation of pain response
 - pain experience

3. Translational laboratory studies
 - impact of neonatal surgery
 - mechanisms and prevention
Long-term impact of pain in early life

early life stress / adversity
- neglect or abuse
 - physical, emotional, sexual
- exposure
 - trauma, infection, toxins
- pain: procedures; surgery

health in adulthood
- mental health
 - mood and anxiety disorders
- medical conditions
 - heart disease, bowel disorders
- chronic pain

Preterm birth

- high risk group
- global health care priority

 WHO Global Action Report 2012
 - largest cause of neonatal death worldwide
 - ~ 3/4 neonatal deaths
 - ~ 1/3 infant death
 - >10% born preterm

<table>
<thead>
<tr>
<th>GRADE</th>
<th>GESTATIONAL AGE (wks)</th>
<th>PROPORTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>32 to <37</td>
<td>84.3%</td>
</tr>
<tr>
<td>Very</td>
<td>28 to <32</td>
<td>10.4%</td>
</tr>
<tr>
<td>Extreme</td>
<td><28</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

- extreme preterm ~ 0.5% of all births

 Blencowe et al. *Lancet* 2012
Preterm birth

- UK & Scandanavia
 - < 10%
 - increasing in UK
 - stable in Sweden

- 2010
 - Sweden: 10-50,000
 - UK: 50-100,000

- mortality higher in UK
 - ? differences in coding
 - socioeconomic inequality
 - not neonatal care

Why do young children die in the UK? A comparison with Sweden
Tambe et al., Arch Dis Child 2015

<table>
<thead>
<tr>
<th>DISEASE</th>
<th>UK</th>
<th>SWEDEN</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prematurity</td>
<td>138.5</td>
<td>10.1</td>
<td>13.7 x</td>
</tr>
<tr>
<td>Neonatal respiratory</td>
<td>34.2</td>
<td>8.9</td>
<td>3.8 x</td>
</tr>
<tr>
<td>Necrotosing enterocolitis</td>
<td>16.2</td>
<td>5.4</td>
<td>3.0 x</td>
</tr>
<tr>
<td>Congenital malformations</td>
<td>112.1</td>
<td>88.6</td>
<td>1.3 x</td>
</tr>
</tbody>
</table>
Preterm birth

- cost of ongoing care
 - adverse neurodevelopmental outcome & disability
 - Blencowe et al. Lancet 2012
 - impact on future health and well-being
 - respiratory; cardiac
 - ? pain

- susceptibility vs resilience
 - reduced risk taking
 - less smoking, drinking
 - peer group / social withdrawal
 - anxiety / introversion

Common mental disorders in young adults born preterm

Preterm : Procedural pain & NICU

- pain and stress in intensive care
 - painful procedures
 - median 10 (0–62) per day
 - use of analgesia increasing

- recommendations
 - guidelines to prevent / minimize
 - assessment
 - non-pharmacologic strategies
 - pharmacology

- research gaps
 - long-term neurodevelopmental, behavioural, cognitive outcomes
 - acute and long-term efficacy and safety of analgesic interventions
Preterm: Procedural pain & NICU

- **sensory processing in infancy**
 - periphery: sensitivity, hyperalgesia
 - brain: altered EEG response

- **brain structure and connectivity in childhood**
 - higher numbers painful procedures: greater change
 - ? impact on function
 - Ranger & Grunau. *Pain Manage* 2014

- **coping style / behavioural response**
 - child: catastrophizing; internalizing
 - parent: solicitousness; stress

Preterm: Impact of Surgery

- **neonatal surgery**
 - adverse cognitive outcome
 - Bayley score: 12-24 months age
 - **preterm**: higher risk

- **MRI 7 days post surgery**
 - $n=32$ preterm (30-36 wks)
 - $n=69$ full-term
 - overall abnormalities
 - 75% preterm
 - 58% full-term
 - preterm
 - parenchymal lesions > haemorrhagic
Preterm : Long-term impact of Surgery

- **extreme preterm**
 - 298; born < 28 wk; assess 2, 5, 8, 18 yrs
 - 26% require surgery

- **biological variables**
 - surgery
 - 5 yrs
 - worse neurosensory outcomes
 - 8 & 18 yrs
 - lower academic outcome
 - especially maths

- **social variables**
 - social class
 - maternal education
 - increasing effect at older ages

Is pain sensitivity altered following NICU?

Range of clinical studies

- **source of initial pain/injury**
 - NICU: procedures ± surgery

- **time interval before evaluation**
 - days, weeks, months, years

- **subsequent experience**
 - psychological, sex/gender
 - social and environmental factors

- **subsequent stimulus**
 - intensity: threshold or noxious stimulus
 - experimental stimulus; procedure; repeat surgery

- **outcome**
 - pain score / current pain report
 - behavior / stress response
 - neurophysiology
 - Quantitative Sensory Testing / EEG / Imaging
Quantitative Sensory Testing (QST)
standardised protocol: range of stimulus modality and intensity

- **thermal**
 - computer controlled thermode (C fibre)
 - baseline 32°C ± 1°C per second: 10-50°C limits

- **mechanical detection**
 - von Frey hairs (A-β): light touch: up-down
 - **punctate probes (A-δ)**: 8, 16, 32, 64, 128, 256, 510 mN
 - threshold and wind-up ratio

- **pressure sensitivity**
 - algometer: visual feedback for standardized slope

- **cold pressor test**

Are sensory thresholds in childhood altered?

- **preterm** (29±2wks) NICU or **term** (39±2wks) NICU vs healthy term
 - n=19-20; 9-14 yrs
 - decreased thermal sensitivity
 - hand and face
 - no difference in mechanical threshold
 - punctate probe

- **cardiac surgery + NICU** (3 prem, 6 term) vs healthy term
 - n=9; 9-12 yrs
 - decreased thermal sensitivity
 - localized at scar; not hand
 - mechanical detection: von Frey
 - decreased hand and scar

Hermann et al. Pain 2006
EPI Cure: Extreme Preterm Infant Cohort

- born <26 weeks gestation in 1995 in UK
 - longitudinal follow-up
 - Marlow et al. NEJM 2005

- pain and sensory testing
 - 11 years
 - Walker et al. Pain 2009
 - 19-20 years
 - Walker et al. (in prep)

- Quantitative Sensory Testing
 - generalized: thenar eminence
 - localized: neonatal thoracic scars

Generalized decreased thermal sensitivity in preterm group

- **hand:** same pattern at 11 years and at 19 years
- overall increase in threshold with age

![Graphs showing thermal sensitivity comparison between extreme preterm and term control groups at 11 and 19 years.](image)
More prolonged stimulus unmaskes increased sensitivity

- **prolonged cold stimulus**: 17-18 yrs
 - preterm ≤28wks (n=31)
 - healthy term (n=29)
- **cold pressor test**
 - 180 secs in ice water
 - reduced tolerance
 - preterm
 - females

Verderhus et al. / Pain 2012

More prolonged stimulus unmaskes increased sensitivity

- **prolonged heat stimulus**
 - QST
 - 9-14 years preterm NICU vs term NICU vs healthy controls, n=20/21 per group
 - healthy controls: habituation
 - sensitisation in ex-NICU
 - Hermann et al. Pain 2006
 - fMRI
 - 11-16 years preterm NICU vs term NICU vs healthy controls, n=9 per grp
 - 30sec heat: increased to VAS > 5
 - NICU preterm vs control
 - higher activation in somatosensory cortex, anterior cingulate and insula
 - brainstem: periaqueductal gray
 - Hohmeister et al. Pain 2010
QST and Neuropathic Pain

- **range of stimuli**
 - different units: normalize to values for controls
- **neuropathic pain**
 - mixed patterns of sensory gain and sensory loss
- **clusters**
 - sensory loss
 - thermal sensitivity
 - mechanical sensitivity

QST & paediatric pain

- Sethna & Berde
- Hermann
- Zernikow

Is descending modulation of pain altered?

stimulus location, intensity & modality

periaqueductal gray

PAG

rostroventral medulla

RVM
Conditioned Pain Modulation

- **evaluate endogenous pain modulation**
 - inhibition ↔ facilitation
- **influenced by**
 - sex / gender
 - psychological factors
- **less efficient**
 - pain populations vs healthy individuals
- **reduced CPM pre-op**
 - associated with increased acute and chronic post-surgical pain
- **potential clinical biomarker**
 - ? predict development of persistent / chronic pain
 - ? predict individual differences in treatment response

Is descending modulation of pain altered?

CONDITIONED PAIN MODULATION

<table>
<thead>
<tr>
<th>TEST STIMULUS</th>
<th>CONDITIONING STIMULUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>Thermode HOT</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Water bath Immersion</td>
</tr>
<tr>
<td>VON FREY HAIR ALGOMETER</td>
<td>COLD</td>
</tr>
<tr>
<td>Electrical</td>
<td>HOT</td>
</tr>
<tr>
<td>WITHDRAWAL REFLEX</td>
<td></td>
</tr>
</tbody>
</table>

OUTCOME

change post vs pre-conditioning
fixed stimulus: PAIN SCORE
variable stimulus: PAIN THRESHOLD

Nir & Yarnitsky.
Curr Opin Support Palliat Care 2015

Tsao et al. J Pain 2013
Binns et al. Pain Manag 2014
Conditioned Pain Modulation

- **efficacy varies with age**
 - more robust in late adolescence
 - 8-11 yrs: 9.2% decrease VAS
 - 12-17 yrs: 30.6%
 - Tsao et al. J Pain 2013

- **reduced CPM**
 - 7-12 year old girls
 - irritable bowel syndrome
 - Williams et al. J Pain 2013
 - 10-17 year old
 - functional abdominal pain

- **no difference**
 - 10-17 year olds
 - new-onset or chronic musculoskeletal pain

Preterm: Is descending modulation of pain altered?

- preterm ≤32 wks vs healthy term (n=13): 7-11 years
 - **test stimulus**
 - fixed thermal: 46ºC for 5 secs: report VAS
 - **conditioning stimulus**
 - cold pressor: 3 min at 13ºC

- **“low-pain”**
 - shorter NICU stay (mean 65 days, n=6)
 - inhibition more marked

- **“high-pain”**
 - longer NICU stay (mean 91 days, n=7)
 - higher procedural pain exposure
 - no inhibition

Preterm birth: risk of chronic pain in later life?

Different approaches:

- **Population epidemiology**
 - Need large numbers to sample high risk groups
 - 1958 British birth cohort
 - Widespread musculoskeletal pain at 45 yrs: 12% (n=8,572)
 - Preterm birth (<37wks): minor increase risk: RR 1.26 (0.95-1.67)
 - \(n = 7382 \) \(n = 288 \) preterm < 37wks
 - \(n = 104 \): LBW (1.5-2.5kg); \(n = 9 \): VLBW (<1.5kg)
 - Norway
 - \(n = 7373 \) 13-18 years (78% response rate)
 - Chronic non-specific pain: 44.4%
 - Perinatal data: 1988-1994
 - ‘No consistent association between preterm birth and chronic pain’
 - \(n = 6850 \)
 - \(n = 80 \) preterm < 34wks
 - ‘Relatively few with low birthweight, low gestational age
 - \(n = 9 \): LBW (1.5-2.5kg); \(n = 60 \): VLBW (<1.5kg)

- **Self-reported current pain in high risk cohorts**
 - No difference
 - EP (17-18 yrs; n=31)
 - VLBW (20 yrs; n=43)
 - Lund et al. Health QoL Outcomes 2012
 - Increased
 - ELBW (23 yrs; n=140)
 - Saigal et al. Pediatrics 2006
 - VLBW (26 yrs; 29±2 wks; n=62)
 - Moderate to severe pain in last month
 - 24% vs 12% in term control

Difficulties

- Variable inclusion
- Small sample size
- Variable outcomes
 - Component of health/QoL (e.g., SF36; HUI)
 - Specific questionnaire
- Pain history

Does early life pain alter the likelihood or risk of chronic pain?
- multiple contributing / modulating factors

NEONATAL EXPERIENCE
- preterm birth
- intensive care
- pain and tissue injury
 - procedures / surgery
 - type / severity / frequency

BIOLOGICAL FACTORS
- gestational age / sensitive periods
- sex / genetic vulnerability
- stress
- intercurrent illness: type and severity
- drugs: beneficial → adverse effects

PSYCHOSOCIAL FACTORS
- NICU environment
- handling → skin-to-skin contact
- non-pharmacological pain interventions

PAIN OUTCOMES IN LATER LIFE
- persistent pain
 - risk / prevalence / severity
 - pain related disability
 - response to treatment
 - health care utilization

BIOLOGICAL FACTORS
- age / sex
- somatosensory function and sensitivity
- stress vulnerability → resilience
- epigenetic changes / neuroinflammation
- intercurrent illness

PSYCHOSOCIAL FACTORS
- gender
- cognitive function
- catastrophizing → adaptive coping
- anxiety → self-efficacy
- parental response / social support

Do changes in nociceptive pathways alter sensory response to future surgery?

- **Does injury unmask increased sensitivity?**
 - repeat surgery in same dermatome as neonatal surgery
 - increased intra-op fentanyl and post-op morphine requirement
 - higher pain scores
 - one third of GOSH acute pain service: repeat patients

- Are effects specific to neonatal injury?
- What are the underlying mechanisms?
- Can we prevent or selectively target altered sensitivity?
Surgical injury

- **plantar hindpaw incision**
 - Brennan et al. Pain 1996

- **acute hyperalgesia at all ages**
 - Ririe et al. Anesthesiol 2003; Walker et al Pain 2009

FIRST POSTNATAL WEEK

P3 : POSTNATAL DAY 3

~ PRETERM NEONATE

6 – 8 WEEKS AGE

P40 – P60

~ YOUNG ADULT

Neonatal hindpaw incision alters baseline sensitivity in adult

nIN: adult with prior incision
- decreased sensitivity
- generalized

- altered descending modulation
- shift balance towards inhibition
- generalized effect
 - neonatal incision
 - same paw
 - contralateral hindpaw
 - forepaw

nINa: neonatal incision + analgesia
- sciatic nerve local anaesthetic block
- prevents long-term change
- activity-dependent

Walker, Fitzgerald, Hathway. Anesthesiology 2015
Adult injury un masks enhanced sensitivity

Mechanical hyperalgesic index (AOC 0-14 days)

- Enhanced injury response extends beyond site of initial incision

Mechanical withdrawal threshold (% of baseline)

- Enhanced sensitivity to re-incision

Neonatal analgesia prevents altered injury response

Neonatal analgesia (sciatic block)

- Specific developmental effect
 - Injury in first postnatal week
 - Activity-dependent mechanism

Reflex response (AUC EMG)

- No enhanced sensitivity to re-incision
Enhanced injury response: mechanisms

neonatal incision
- acute and long-term changes at spinal synapses
- specific to neonatal injury
 - prevent with local anaesthetic

Mark Baccei; University of Cincinnati

ALTERED SYNAPTIC FUNCTION

- strengthened input to lamina I projection
- ↑ glutamatergic signaling
- ↓ phasic and tonic glycinergic inhibition

Walker, Beggs, Baccei; Exp Neurol 2016

Enhanced injury response: role of spinal microglia

- microglial reactivity
- increase neuronal excitability

Salter & Beggs. Cell 2014

Sublime Microglia: Expanding Roles for the Guardians of the CNS
Enhanced injury response: role of spinal microglia

- nIN-IN
 - microglial reactivity
 - increased degree and duration
 - Iba1, phospho-p38
 - Beggs et al. Brain 2012
 - Schwaller et al. Anesthesiol 2015

nIN-IN: increased microglial reactivity following adult incision
Enhanced injury response: role of spinal microglia

- inhibit spinal microglia
 - minocycline; p38 inhibitor
 - block effect of prior incision

ADULT MALE

nIN-IN: increased microglial response following adult incision

ADULT INCISION: IN
NEONATAL + ADULT INCISION: nIN-IN

Iba1 fluorescence
(mean pixel intensity)

minocycline: prevents enhanced sensitivity in nIN-IN

Does the cortical response to surgical injury differ in early life?

Intracortical activity: somatosensory cortex
- spontaneous activity
 - suppressed by anaesthetic (isoflurane) in younger ages

- evoked response
 - not suppressed in younger

- after hindpaw incision
 - sensitized response
 - neonate > adult

- time-frequency spectral analysis
 - Y: frequency band: 1-100Hz
 - X: time: seconds
 - colour: energy

Impact of neonatal incision in brain

Intracortical recordings: somatosensory
- hindpaw incision: acutely sensitizes response to noxious stimulus
- need analgesia

Ex-vivo imaging mouse
- high resolution MRI imaging
- prior neonatal incision
 - alter degree and distribution of response to adult incision
 - identify ROI for tissue analysis

EPICure preterm young adults
- structural and RS-fMRI

PAIN EXPERIENCE

sensory

emotional

sex / gender

pain and injury in early life

pain in adulthood

Translational studies identify long-term impact of prior neonatal pain experience

Staatsen M, Walker*